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The Finite Memory Prediction of Covariance Stationary

Time Series

by H.J. Newton and Marcello Pagano

Institute of Statistics, Texas A & M University

and

Harvard University and Sidney Farber Cancer Institute

Summary

An algorithm is presented for conveniently calculating h step ahead

minimum mean square linear predictors and prediction variances given a

finite number of observations from a covariance stationary time series Y.

It is shown that elements of the modified Cholesky decomposition of the

covariance matrix of observations play the role in finite memory pre-

diction that the coefficients in the infinite order moving average repre-

sentation of Y play in infinite memory prediction. The algorithm is

applied to autoregressive-moving average time series where further sim-

plifications are shown to occur. A numerical example illustrating the

basic points of the general algorithm is presented.

Some key words: Covariance stationary time series: minimum mean

square linear prediction; modified Cholesky decomposition

algorithm; autoregressive-moving average time series.

1. Introduction

As pointed out by Whittle (1963, p.47), the calculations required to

find finite memory nredictors for covariance stationary time series are

made difficult by the need to calculate the inverse of the T x T covariance

matrix of the observations.
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Thus many authors (see Box and Jenkins (1970, p. 126) have proposed

using approximate infinite memory predictors rather than finding the

exact finite memory predictors.

Pagano (1976) has given an algorithm for finite memory prediction

of a pure moving average process which reduces much of the calculation

in the general algorithm. Ali (1977) uses a well known result to reduce

inverting the T x T matrix to the successive inversion of smaller matrices.

The purpose of this paper is to propose a general algorithm for pre-

diction of covariance stationary time series which capitalizes on the

special structure of the modified Cholesky decomposition of a symmetric

Toeplitz covariance matrix. Section 2 contains the algorithm as theorem 1

which also shows the analogy of the algorithm with infinite memory pre-

diction. In section 3 theorem 2 presents the results of applying theorem 1

to autoregressive-moving average processes. Finally a numerical example

is presented in section 4 illustrating theorem 1.

2. Finite Memory, Horizon h, Minimum Mean Square Linear Prediction of

Covariance Stationary Time Series.

Consider a zero mean covariance stationary time series {Y(t), t=0, i,...I

with autocovariance function R(v) = E(Y(t)Y(t+v)). Then given observations

Y(1), ..., Y(T), the horizon h, memory T, minimum mean square error linear

predictor Y(T+hIT) of Y(T+h) is given by that linear combination of

Y(1) .... , Y(T) that minimizes E {Y(T+h) - Y(T+hIT)} .

Thus

T
Y(T+hfT) j X 1Th(0) Y(T+I-J)

jwl

where T~ - (ITA(), "'''~T) satisfies

......TTh T h



-3-

rT T,h T,h where r T,h = (R(h), R(h+T-1))T

and 1T = TOEPL (R(O), ..., R(T-1)), i.e. rT is the T x T symmetric

Toeplltz matrix having (j,k) element R(lj-kl)

Suppose that Y is purely nondeterministic, i.e.

2 Ti
Goo2 rexp f log f~~w) > 0 where f is the spectral density

function of Y. Then Y(t) can be represented as the limit in mean square

of an infinite order moving average process, i.e.

y(t) = B Mk F-(t-k) (i)

k=O

where E(t) is the infinite memory horizon one error in predicting Y(t)

and E(E(T)c(T-j)) = 6. o2 for all integer T and j, where 6 is the Kronecker
s M K

delta. Also tOe horizon h, minimum mean square error linear infinite
2

memory predictor Y(T+hlT, T-l, ...) and prediction variance aT , are

given by

Y(T+hlT, T-l, ...) = Q B(k)E(T+h-k) , (2)

2 2 h-1 2

k=O

The process Y being purely nondeterministic also means that its auto-

covariance function is positive definite. Thus for all T we can form the

modified Cholesky decomposition (Wilkinson (1965)) rT = L D L of r whereTT TT T
LT is a T x T unit lower triangular matrix and DT is a T x T diagonal

matrix. An important property of LT and DT is that they are nested for

increasing T, i.e.

I,
I.

Di~t
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L T+l[L T 0] D DT+l[D T 0Tl

Thus the (j,k)th element of LT will be referred to as Ljk.

The following theorem shows the role played by LT and DT in finite

memory prediction.

Theorem I

Let Y be a purely nondeterministic covariance stationary time series

with covariance function R. Let F = L D L T be the modified Cholesky
T T TT

Tdecomposition of the covariance matrix of T = (Y(1) .... , Y(T)). Define

T= (e(l), ... , e(T)) by LTeT = YT" Then

T+h-1

a) Y(T+hlT) = I LT+hT+h-k e(l+h-k)
k=h

22 h-l 2
b) a T h = E {Y(T+h) - Y(T+hIT)} Y L T~ T+h-k dT~h-k

c) i) lim 
L 

= (j)

T LT, T-j

2
ii) lim d 2

TT

Proof of Theorem

a) Defining the T x T permutation matrix PT to be a matrix of zeros

with ones on the main reverse diagonal, we have Y(T+hlT) = X T T
-T ,h T XT

where r TT,h = rT,h since premultiplication (postmultiplication) by PT

T -~l
reverses row (column) order of a matrix. Thus Y(T+hlT) = Th FT r TT~ T YT

T Pr-1 P P eT r-I where P P r since P2 1T,h PT FT T T !T 0 PT,h T -T -T,h -TT,h T T

and since for the symmetric Toeplitz matrix rT we have P TF
1 PT = FT1



-5-

Thus Y(T+hlT) =p T  L- D L Y =T LT DT e To show that
-T h T T T -T -T h T T _TT

this is the result in (a) we note 1) PTh = (R(T+h-I), ... , R(h)) is the
T -Th-=

last row of rT+h without its last h elements, 2) rTLT DT = LT for all T,

and 3) because of the nesting of the L and D T  is the T x T prin-
T ndT9 TD i TX Trn

-T -I -I
cipal minor of the upper triangular matrix L D T+h  T LT+h

(T -T -1.~ -T -l F~ -I

Thus (pT LT D) = h L -TD) 1( r L1 L
k ,h T  = (kT+h T+h T+hT+h,k rT+h Th T+h T+h,k

L T+h,k , proving (a).

To prove (b), note that aT,h = R(O) - T,h T,h R(O)

T -T - 1 -1  T T T -T
-Th T T T -T,h -T,h T -T,h w T,h =  h LT T

which as above is the row vector (LT+h,, .... LT+hT) Also R(O)

T ~ T+h2rf+h T+h = (LT+h DT+h LT+h)T+h, T+h = T LT4L.Uk d., thus proving (b),

' hThk=l

To prove (c) we first note that multiplying both sides of (1) for

t = T by c(T-j) and taking expectations gives

E(Y(T)E(T-J)) = 2(j)

We next note that

E(e(T)e(T-J)) = 6 d
T

T
E(Y(T)e(T-J)) =kl LT,k E(e(k)e(T-j)) = LTTj dT.j

k1l

and that e(1) = Y(l), e(t) = Y(t) - Y(tlt-l, ... , 1), t = 2, ..., T, where

the notation Y(tit-1, ..., 1) makes explicit which Y's are used in pre-

dicting Y(t). Then by the stationarity of Y we have that E(Y(T)e(T-J))

- E(Y(T) (Y(T-j - Y(T-jIT-j-l, ... , 1)]) - E(Y(O) [Y(-j)-Y(-j -j-1,...,1-T)])

which by a standard martingale convergence argument converges to

*
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E(()(j)2 2
E(Y(0)F(-J)) (J)c o .A similar argument shows dT -- o. thus

proving (c).

Thus comparing (a) with (2) and (b) with (3), it is clear that the

elements of LT and DT are playing the role in finite memory prediction

of a2 and 8 (') in the infinite memor- case, while (c) makes explicit

the connection. In the next section we describe how this algorithm can

be simplified for an autoregressive-moving average process.

3. Application to Autoregressive-moving Average Processes.

The univariate autoregressive-moving average process {Y(t), t=0,+l, ... }

of order (p,q) is defined by

p q

I a(j)Y(t-J) = f(k)c(t-k) , t = 0, + 1,
j=0 k=0

2
where a(0) = 8(0) = 1, and E(c(t)) = 0 , E(c(t)c(t+v)) = 6 a

p
We assume that the zeros of the complex polynomial g(z) = a a(j)z j

J=0

are all greater than one in modulus so that Y does indeed have an infinite

order moving average representation and that (defining Ry(v) = E(Y(t)Y(t+v))

pI a(j) R y(J-v) =f 0 , v > q.

J-0

T

Then given a realization YT = (y(l), ..., y(T)) from Y(') we define

the following quantities:

i) rz,T - TOEPL (Rz(0), ..., Rz(T-1) where Z(-) is an autoregressive

process of order p with coefficients a(l), ..., a(p) Thus Z(.) is

referred to as the autoregressive part of Y.

ii) X = (X(l), ... , X(T))T = V Y where r = LzDzLT and
TZ,T YT rZ,T ZT ZT Z ,Tan

-1.V ZT -LZ T.
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Then it is well known that the j th row of VZ,T is given by

T T
Yj = (lOT_) j

((J-., i, OTCj ) , j = 2 ... , p

T T
ct0T a~) (l) 1 0' 9T. j = p+l, .. ,T

k
where Y Lk(Z ) RZ(Z-v) = 0, v 1, ... , k <p

Thus there are only p(p+l)/ 2 distinct elements of VZ,T (other than

0 and 1) and a (k) , 1 < k < j < p are easily obtained from a(l), ... , a(p)

by performing Durbin's recursive algorithm (1960) for decreasing j.

VT
iii) X = E( XT) = VZ, T ry, T where ry T = TOEPL(Ry(O),...,R(T-I)).

X,T -TT ZTYTZTYT

p q
Since for t > p , X(t) X c(j)Y(t-j) = 6 8(k)c(t-k) , we have for

j=0 k=O

j,k > p, (rX, T jk = Rx(dj-kl)

where

R -(v) a I (k)a(k+lvj) , IvI < q
k--0

, IvI >q

Thus rX,T is symmetric band Toeplitz in its last T-p rows and columns

T
while its p x p principal minor is given by VZ,p ryp V Z,p. Thus FX,T

is almost the T x T covariance matrix of a pure moving average process.

iv) r = LX LD T Since (r= 0 forlij-k> qiv X,T  LX,T DX,T X ,T * (X,T)J,k

then LX,J k =0 also for J-k > q . Since LX,T is nested for increasing

X, T
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T we refer to the (J,k)th element of LX, T for any T > *,k as LX,J,k

v) The vector eT = (e(l), ..., e(T)) T by Le = XT  , e

max(J-Iq)

e(l) = X(l) , while e(j) = x(j) - I LX jJ-k e(J-k)
k=l

Since VZ, T and LX,T are nested for increasing T then so are XT and
T T T-T(T

eT' _e. +I = (X T X(T+I)5, eT+l T e(T+l).

With these quantities defined, the algorithm is contained in the

following theorem:

Theorem 2:
p

a) Y(T+hlT) = X(T+hIT) - ct(j) Y(T+h-J IT)
j=1

where
q

i) X(T+hlT) - LX,T+hT+hk e(T+h-k) h = i q
k=h

0h > q

ii) Y(T+h-iIT) y(T+h-j) if j > h

b) h2 = E {Y(T+h) - Y(T+hlT)}2

=h-

I hXTh T+hT+hk dT+h-k

k=O

c) i) LXTT-k -- (k) , k = 1, ..., q as T -#=

ii) (VzT LXT) --*- 6.(k) as T -

iii) Let y(O) - 1, y (1), Y (2), ... be the coefficients of the

infinite order moving average representation of the auto-

regressive part of Y. Then



V =y(k) ,k =0, 1, .. ,j, j > 0
z ,p+j ,p+j -k

iv) zVp_ ,k k 1p -1
z ~ p+j Pj- ,k k=1 . P

Proof

Since r7YT TOEPL(RY(O), ... , R.Y(T-l)) = V 1' F V 1

-lj T ZT X,T Z,T
=V -1L D L T V -T and the modified Cholesky decomposition

Z,T X,T X,T X,T ZT

is unique, then (b) and (c,ii) follow immediately from Theorem 1.

Also, Theorem 1 shows that the elements of the rows of V -1are con-
Z,T

verging to the infinite moving average representation of the autore-

gressive part of Y. Thus the rows of L xare converging to the infinite

moving average representation of the moving average part, that is to

0() *.., B(q).

To prove (a), note that since X-T =VZ,TYT we have
x V Y ,T,h

2E(Y(T+h)) V ZT eY,T,h -Also for T+h > p ex *~

p p
E(X T XCT-ih) - a cd) Y(T+h-j)]) = pXTh X a(eX,~-j=l XT, J=l

X'Th a~) V ,T Y,T,h-j weepX,~ E(XT X(T+h)). Thus
j=l

P V_ p --1j
eY,T,h =Z,T eXY,T,h Z,T eX,T,h j~l -Y,T,h-j

Therefore, Y(T+hjT) = p V T LT D_ e T V -TV TLT D -1eY ,T,h Z ,T X,T X,T TT eX,T,h Z,T X ,T X,T X,T-T

Ct pT VT L-T D-l e T L-T -l
- L n()YT,h1j VZ T LXT DXT _T , XTh LXT DXT T

I a.'J) Y(T+h-JfT)
J-1
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An argument identical to that used in the proof of Theorem (la) proves

part i) of (2a). To verify (ii) we substitute for e and X-T -TTT L-T D-1 T -1

to obtain p T V L- D- e Tp F1 Y (~-tY,T,h-j VZ,T X,T X, -T = -Y,T,h-j 'YT-T
T

since Y, Th-j is the (T+h-j)th row of F

To prove (2ciii) we note that comparing coefficients of like powers

of z in the equation 1/ a(j)z j = y(k)zk gives the following recur-
j=0 k=O

k
sion for y: I a(t)y(k-) = 

6k' k > 0. Thus we need only show
/=0

k
k a(/)V " = k 0, ... , j But the left hand side
e=0 Zp+jp+j-(k-l) k..

of this equation is just the (p+j)th row of v times the (p+j-k)th

column of VZT. Finally, (2civ) follows by multiplying the (p+j)th

row of V times the kth column of V- I for k = 1, ... , p-i
z z

From Theorem 2 we see that to find Y(T+hlr) and Oh2 for h = h l ,

h 2 and T = T1 , ... , T2 , one essentially needs to calculate

N,2h L , and D Theorem (2ci) shows that there are
Z,T 2+h 2 9XT2 +h2 ' 2 +h2*

q nonzero, nonone elements in a row of L and that these elements are

converging to the coefficients of the moving average part of Y. Theorem

(2ciii) shows that only the first p-l elements of rows of V 1

are not one of y(O), y(l), ... while (2civ) shows these elements are

easilycalculated recursively. Thus the number of elements in V
1

and LX, 2+h2 that need to be calculated and stored in a computer program

increases linearly with the number of rows needed prior to attaining

convergence. This convergence is illustrated in the next section.
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4. A Numerical Example

Consider the autoregressive-moving average process Y of order p = 4

and q 3 with a(l) = -. 3357, a(2) .0821, a(3) = .1570, a(4) = .2567,

Rl) = -.6077, 1(2) = .0831, a(3) = .1903, and 02 1. Then the variances

and first 10 autocorrelations of Y, (denoted p y()), the autoregressive

part of Y (denoted 0Z(-)), and the moving average part of Y (denoted W(.)

are given in Table 1, while Table 2 gives the first 10 terms in the in-

finite order moving average representation of Y, Z, and W.

Table L. Variances and First 10 Autocorrelations py(-, 0Z(-) , 0 (.) of

Y, autoregressive part of Y, and moving average part of Y where

Y is the above ARMA (4,3) process.

v Py(v) Pz(v) Pw(v)

1 -.2227 .3806 -.4548

2 -.0749 -.0112 -.0230

3 .0616 -.2897 .1347

4 -.1949 -.4128 0

5 -.0015 -.2107 0

6 .0250 .0115 0

7 .0233 .1603 0

8 .0560 .1919 0

9 .0134 .1036 0

10 -.0102 -.0091 0

Variance 1.1306 1.3891 1.4124

4'
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Table 2. First 10 Terms in Infinite order Moving Average Representation

of Each of Series in Table 1.

jARMA AR part MA part

1 -.272 .336 -.608

2 -.090 .031 .083

3 .025 -.174 .190

4 -.198 -.370 0

5 .015 -.201 0

6 .041 -.018 0

7 .037 .114 0

8 .058 .166 0

9 .006 .101 0

10 -.019 .007 0

Finally Table 3 illustrates the convergence proved in Theorem 2 in

the above section.

Table 3. The Matrices -l-

VZ110 Lxio0 Vz,10  Lx,1o

V1 LVz9l0 X.10.

1

-.223 1

-.075 -.252 1

.062 -.064 -.250 1

-.195 .019 -.091 -.247 1

-.002 -.205 .013 -.090 -.266 1

.025 .004 -.206 .013 -.094 -.271 1

.023 .032 .008 -.206 .021 -.091 -.270 1

.056 .038 .041 .007 -.200 .024 -.090 -.271 1

.013 .062 .042 .041 .014 -.199 .025 -.090 -.272



1

.381 1

-. 011 .450 1

-. 290 .116 .403 1

-.413 -.155 .053 .336 1

-.211 -.389 -.172 .031 .336 1

.012 -.252 -.382 -.174 .031 .336 1

.160 -. 058 -. 226 -. 370 -. 174 .031 .336 1

.192 .102 -. 031 -. 201 -. 370 -. 174 .031 .336 1

.104 .178 .112 -. 018 -. 201 -. 370 -.. 174 .031 .336

L Xio

1

-. 603 1

.208 -. 702 1

.338 .102 -. 653 1

.177 .075 -.583 1

.180 .075 -. 602 1

.180 .077 -.607 1

*.188 .082 -. 606 1

.189 .083 -.606 1

.190 .083 -.607
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